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1. 011-- I

This paper is concerned with the statistical assessment of dependency

beyond autocorrelation in the context of nonlinear time series models. The

central theme is that residuals from models fitted according to

inapplicable linearity assumptions can also profitably be used for further

analysis beyond linearity. A well known property of linear time series

residuals is that they are uncorrelated; in the context of linear models

they should also be independent, apart" from the effects of parameter

estimation with short series. However, in the context of nonlinear models

it is not often recognised that uncorrelated residuals also hold

information concerning higher order dependence in the data. Developments

*of such a higher order residual analysis will be explored here, in

particular for two types of nonlinear autoregressive model which have the

usual linear Yule-Walker autoregressive correlation structure. Some higher

order dependency correlations will be obtained. In a later paper, the

suggestion of reversed residuals will be made, and the analysis given in

this paper will be extended to encompass these reversed residuals.

2. AX'O SION AND LINEAR AUZOREGRESSPZ .RESIDUAS

2.1 Autoregress ion for Nonlinear Models

The standard form of autoregression needs widening for use with

nonlinear models; we consider first the standard form which is explicitly

autoregressive in a linear additive way and then several weaker variants.

A stationary time series (Xt) of mean ; is assumed.

Under the Ltnear autoregresstue modeL, of order p, the (Xt) satisfy the

equation

Xt-A-al(Xt.l-A)+a 2 (Xt_ 2 - )+...+ap(Xtp-)+et, t-0, I, *2, ... (2.1)

where the at are independent and identically distributed and A,al,a2, .... 1 ap

are fixed parameters; these parameters are also assumed to satisfy the

condition that t)he polynomial l-alz-...-apzP has all roots outside the unit

* 1



circle.

A more general definition of autoregression of order p, could be the

tnear condt tonaL .xpectatton requirement that

E( Xt-,u I Xt-1, Xt-2, ... )

- 3l(Xt1-M)4Ia2(Xt_2-)+. . .+ap(Xt.p-A), tmO,*l,*2..... (2.2)

Note that the conditional expectation is with respect to aLL previous Xt.

The definition (2.1) implies (2.2) but not vice-yvern . Thus this

definition could apply to models which axe not' of the .near form (2.1),

either because the dt are dependent, but still with I Xt-l,Xt - 2 .... )-0,

or because the model has some other structure altog# :. For instance,

there are the random coefficient models of Nicholls a. Quinn (1982), the

exponential distribution random coefficient models of awrance and Lewis

(1991,199S5), the discrete distribution random coefficient modtAs of Jacobs

and Lewis (1993), and the gamma-beta random coefficient models of Lewis

(1991).

Random coefficient autoregressive models of order p take the general

form

Xt - At(.1 ) Xt+At(2 )Xt_2+.. .+At(P)Xt.p+Bt, t-O,l,,*2,... (2.3)

where the vector of coefficients (At(1),At(2 ),...,At(P),Bt) is a stationary

vector sequence of independent random variables, independent of

XtI,Xt 2..... and sometimes in addition, Bt is independent of the random

coefficients At(i) at time t. A roots condition, analogous to that

required for (2.1) is also needed. It is easy to see that such models

satisfy the linear conditional expectation definition of pth order

autoregression, but are nonlinear in the sense of (2.1); see also Lawrance

-- and Lewis (1985) for further discussion of the meaning of nonlinearity. A

fi.rst order case of the type (2.3) will be used to illustrate the proposed

method of residual analysis of autoregressive nonlinearity.

A further and weaker definition of autoregression is the requirement

that the autocovariances of the (XCt), denoted by (-yk), just satisfy

Yule-Walker linear difference equations of the form,
2
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Y.lY- _l+a2Yr2+. . .@p-+ p, Yr--r, r-1,2 ... (2.4)

for suitable constants al 2 .... ap) this will be referred to as

YULe-WaLker auztoregrossi-on. It is true for processes which satisfy (2.1)

and (2.2), as may be verified in the usual manner by multiplying Xt by Xt-r

and taking expectations. The reverse is not true; (2.4) does not imply

(2.1) or (2.2). A case in which (2.4) holds but in which (2.1) and (2.2)

do not, is the product autoregression model of McKenzie (1992), where, with

p-l, E(XtlXtI,Xt_2 .... ) is a fractional power of Xt 1; this model will

also be used in Section 4.3 as an ilustration of the proposed residual

methods.

A variety of other models can satisfy the Yule-Walker definition of

autoregression, and yet not satisfy the linear conditional expectation

definition. Amongst these are first order Markov chains under certain

conditons, and others such as the semi-Markov generated processes discussed

in Cox and Lewis (Chapter 7, 1966) and Lewis (1980). Notice that we do not

define nonlinear autoregressive models in a constructive way. The class is

so wide as to make this impossible; one such class has been studied by

Jones (1979). Rather, we require that the autocorrelations should satisfy

linear equations, similar in structure to those satisfied by the

autocorrelations of linear autoregressive models. In view of this, our

suggested analysis extends, rather than supercedes, conventional methods.

2.2 Definition and Discussion of Linear Autoregressive Residuals

For the analysis of time series data involving models satisfying (2.1),

or (2.2) or minimally (2.3), the use of Ltneor autoregressiue restiduaLs of

order p, defined as

( P ) - (Xt-. )-al( Xtl- )-02( Xt-2- L )-. -p( Xt-p-AL) (2.5)

0 is suggested. This suggestion is based on the following theorem, which is

a generalization of a result given in Lawrance and Lewis (1984, Section

7.2) for p-2.

3 ,
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Theorem. Let the stationary process (Xt) satisfy the Yule-Walker type

equations (2.4). Then the linear autoregressive residuals (Rt(P)) defined

at (2.5) are uncorrelated (although not necessarily independent).

Proof. The autocovariances of the residuals (2.5) are

CovCRt(P).Rt+r(P) ] - Cov(Xt-),Rt[r(P) ]-alCov (Xt-l-),Rt+r(P) ].•

-apCOv(Xt-p-A),Rtr(P)] (2.6)

- COv(Xt-A),Rt+r(P4)-lCov((X€-/L),Rt+r+l(P)]-...

-apCov(Xt-),iRt+r+p(P)]. (2.7)

Equation (2.7) follows because the (Xt) process is stationary and

consequently the (Rt(P)) process is stationary. The covariances in (2.7)

need only be considered for positive lag since autocovariance is an even

function of r. Then the crosecovariances on the right-hand side of (2.7)

are all of the same type and given by
~~~~~Coy ( Xt-/ ), Rt+r( P) ] - Cov ( xt-/ ), {((xt+r- )-'al( xt+r-1-9 )... - p( Xt+r-p- ) }

- r-alYr-l-...-apyr-p r-1,2,.... (2.9)

Now by the Yule-Walker equations (2.4), the expression (2.8) is zero. Thus

using (2.9) in (2.7)

Cov[Rt(P),Rt+r(P) ] - 0 r-*l,*2,..., (2.9)

as was to be proven. The proof is immediate for the linear autoregressive

model (2.1), since Rt(P) - et, and et and Rt+r(P) are by definition

independent.

Note that the linear autoregressive residuals (Rt(P)) will generally

still be dependent though uncorrelated in nonlinear modelling of the (Xt);

with the linear autoregressive model (2.1) the (Rt(P)) ci,,L not onLy be

uncorreLated but aLso Cndependent. rt ts thts dtff erence uhtch utLL be

exptot ted to ezpLore nonLtneartty tn pth order nonLtnear autoregressue

processes. The dependency attributable to parameter estimation is taken to

be small in the large scale applications we have in mind; indeed, nonlinear

modelling of short series of data may well be hard to justify.

The quantities Rt(P) are autoregressive residuals in the sense that

1t(P) is the residual of Xt after subtracting off At(P ), its best linear

4
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least square* predictor in terW of Xt.l,Xt_2..... given by

jft (P -,. +0l( Xt-l-# ) a2(X4t-2- .)+....- p( X:-p-,"). - 2.20o)

Thus the residuals (Rt(P)) give the basic way of taking out the linear

correlation component in models with pth order autoregression minimally of

the 'Yule-Walker ' form (2.4).

A further point worth noting about the residuals Rt(P) concerns their

crosscova.riances with the Xt's. In the proof of the theorem it is seen

that Cov(Xt-A,Rt+r(P) ] - 0 for r - 1,2..... However, the other half of

these crosscovariances is non-zero.

Exauple: The (nonGaussian) linear AR( 1) model

Taking (2.1) with p-l,and p instead of a1 , the crosecorrelation of Xt-g and

Rt-r(P) in the AR(l) model is given by

Corr(Xt-,Rt-r) - (1-p 2 )1 / 2 pr for r-l,2,3,...; (2.11)

the superscript has been dropped from Rtr, as it will be in similar future

use. Note further, that in this case Rt+r is independent of Xt for

r-1, 2 ..... Further use of (2.11) will be made in Sections 3 and 5.

For the use of (Rt(P)) in data analysis, the order p of the linear

aspect of the autoregression needs to have been chosen; any of the

available standard methods may still be used. In addition, of course, the

,al,a 2 ..... ap need to be estimated; there are at least two convenient

possibilities: (1) the assumption of a linear autoregressive model like

(2.1) and the use of least squares estimation, and (2) a non-model based

approach to estimation employing the first p Yule-Walker type equations

(2.4). The latter is suggested here; however, Tjostheim and Paulsen (1983)

* recommend (2) when dealing with modest sized samples from linear models, on

account of serious estimation bias with the Yule-Walker estimates. Since

the use envisaged here is primarily with nonlinear models and substantial

sets of data, the superiority of (1) over (2) is not established or

crucial.

lid . ,



3. ASSUFM I al OF G OI3 0 DEMND=

Since the linear autoregressive residuals (RtCP)) of (2.5) have zero

covariances when (2.4) holds, but for nonlinear processes need not be

independent, a residual analysis of this nonlinearity can be based on an

assessment of their higher order dependence. To consider what form this

might take, we note that the use of (Xt 2 ) has been suggested by Granger and

Andersen (1978,p.63) for bilinear models, for which in many of the simple

cases the Xt have zero autocorrelations themselves. The corresponding

initial suggestion here for a residual analysis is, as was briefly

illustrated in Lawrance and Lewis (1995), to use the residuals ((Rt(P)) 2 }.

Displays can then easily be made of the associated autocorrelation

functions, scatter plots, periodograms, cumulative periodograms, etc, using

standard (second order) time series software.

However, the autocorrelations of ((Rt(P))2 } are fourth order quantities

in the original series (Xt), which is a double jump from the second order

autocorrelations of the series (Xt). Such quantities will be very

difficult to handle theoretically with most types of nonlinear model.

The crosscorreLatton function of (Rt(P)) and ((Rt(P)) 2 ) is essentially

third order and is preferred here; for previous use see Subba Rao and Gabr

(1904) and Lawrance and Lewis (1985). Since this crosscorrelation function

- involves the variance of ((Rt(P)) 2 ), it also needs some fourth order joint

moments of (Xt) up to lag p. The necessary calculations of all these

0_ quantities for two nonlinear models will be given in Section 4.

'1 The behaviour of the croscorrelation function of (Rt(P)) and

((Rt(P))2) may be judged against the fact that the (Rt(P)) are tndependent

* for the linear autoregressive model of order p, and hence the

pcrosscorrelation function of (Rt(P)) and ((Rt(P))z) will be zero except at

lag zero. For the random coefficient autoregressive processes considered

* in Section 4, the suggested crosscorrelation function will be shown to

posess a useful eut-off property; this generalizes the NEAR(2) result given

6



in Lawrance and Lewis (1965).

Two rather simpler crosscorrelation quantities can be proposed from

consideration of the zero covariance result of (2.8), and the additional

fact that when the pth order linear autoregressive model holds, Xt and

Rt+r(P) (r-l,2,...) will be independent, and not just uncorrelated.

Working in terms of (Xt) adjusted for its mean g, which is better

computationally and often nicer theoretically, the following quantities may

be considered,

CorrC(Xt-,M)2 , Rt+r(P)], for rO,*l,t2,.. (3.1)

Corr[Xt-I,(Rt+r(p))2 ], for r-O*l,*2.... (3.2)

These autocorrelations are not equivalent in the aspects of higher order

dependency of the (Xt} process which they assess. To see this, note that

the covariance corresponding to (3.1) involves only third order joint

moments of the form Et(Xt-g )2 ( Xt+r-i-pJ)], i-O,tl,...,tp while the

covariance corresponding to (3.2) involves additional joint moments of the

form E[Xt-;)(Xtr-4)(Xt+r-i)], iO,*l,.... p. Further, the denominator of

(3.2), by needing var((Rt(P))2), is more complicated in the higher order

moments it involves relative to the denominator of (3.1) which needs

var(Rt(P)). However, both correlations, and particularly (3.1), are more

tractable than the autocorrelations of ((Rt(P))2) or the crosscorrelations

of (Rt(p)l and ((Rt(p))2).

Example (Continued from (2.11)): The (nonGaussian) linear AR(1) model.

As an illustration of the use of (3.1) and (3.2), for the linear AR(1)

model, ((2.1) with p-l and p instead of al) there are the results

r r-l,-2,...
Corr-(Xt-A),(Rt-r )2 i] vat(X) (3.3)~skew(X5 [var(RX)], (l-p3)pr, r-O,l....

( var( R2 )]'
0 r=-1, -2 ....

Corr[(Xt-) 2, Rt-r] Vat(X- (3.4)
skew(X) -(-- P zr , r-O,l,...

Note the faster geometric decrease in (3.4), for non negative lags,

relative to (3.3); also (3.3) contains more higher moment information. The

7



behaviour of these functions - zero for rtO and geometric decay for r>O -

suggests linear models with skewed marginal distributions or nonlinear

models. Discussion of parallel results for two types of nonlinear model

are given in section 4.

The use of squaring in the construction of these higher order

dependency measures is recognized as being pragmatic and somewhat arbitary;

it does however lead to expressions involving selected types of simpler

higher order cross moments. The end use of the higher order dependency

measures can either be exploratory for a given data set, to ascertain

whether there is appreciable nonlinearity present, or constructively, to

provide evidence for fitting suitable types of nonlinear model which can

match the observed higher order dependency.

Earlier discussion of higher order dependence in nonGaussian Ltnecr

models is given by Rosenblatt (1980) in terms of the bispectrum; aspects of

nonlinearity and higher order spectra are briefly considered in Rosenblatt

(1979).

.-
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4. BGH1ER ORDER DEPUIDDN FOR TWO TZPZS OF HONLXNRR WDEL

In this section we obtain properties of the measures of higher order

dependency discussed in the previous section, for two specific types of

nonlinear models. The models considered are autoregressive in the

Yule-Walker sense of (2.4), but not in the linear sense of (2.1).

4.1 Random Coefficient Autor*gresive Models

As already remarked in Section 1, a generalization of the linear

autoregressive model (2.1) is to let the coefficients a1 ,a 2 ,... ap be random

variables. One general class of such models has been discussed by Nicholls

and Quinn (1982) who cite Andell (1976) and articles in the economic

literature. Other classes of models with random coefficients include the

discrete distribution modes of Jacobs and Lewis (1983) and the exponential

models of Lawrance and Lewis (1981,1985). The class of random coefficient

autoregressive processes considered here is given by

Xt - At()Xt_l+At(2 )Xt_2+...+At(P)Xtp+Bt t-O,1l,12,..., (4.1)

where (At(1),At(2 ),...,At(P),Bt) is independent of Xt.l,Xt_2,... and forms

a stationary vector sequence of tndepondent random variables where

E(At(i))-a j for j-, .... ,p satisfy the standard polynomial equation. The

components of the vectors are not necessarily independent. For example the

discrete distribution models of Jacobs and Lewis (1993) can be written in

this form, and have dependent coefficients, as do the exponential models of

Lawrance and Lewis (1981, 1985). It is easily verified that the process

(4.1) satisfies conditional expectation autoregression (2.2) and thus also

the weaker Yule-Walker definition (2.4); it will also clearly be

stationary. Note as well that the standard linear autoregressive model

(2.1) is a special case of (4.1) in which the random coefficients are

actually constant.

We now give a characteristic result for this type of process when

4 higher order dependency is measured by Corr[Rt(p),(Xt+r -) 2 ] or

Corr(Rt(P),(Rt+r(p ))
2
], assuming that the Rt(P)'s are uncorrelated.

%9



Theorem. With the random coefficient model (4.1),

Corr(Rt(P),(Xtr-A )2 ] and Corr(Rt(P),(Rt-r(P)) 21 are equal to zero for

r-1,2,....

Proofs Using the definitions (2.5) and (4.1).

P-t( p) - 5=X-- -••-p( Xt_g-j )

S(At(l 1)- .)Xt_l + (At( 2 )-a 2 )X:-2 + .. + (At(P)-p )Xt.p

+ at-( 1-G1 .. .. L-ap 5 (4.2)

On multiplying (4.2) by (Rtr(P)) 2 and taking expectations, thus obtaining

CovWRt(P),(Rt.r(P)) 2 ], we have a sum of p terms given by

pE E{(At(J)--aj)Xt-J(Rt-r(P)) 2  (4.3)
ii-

and a last term involving Bt which is clearly zero. Now At( )-aj is

independent of both the Xt.j and (Rt-r(P)) 2 , for r-I,2,..., which may

nevertheless be themselves dependent. Thus the jth term in (4.3) becomes

E(A(J)-aj)EXt-j(Rt..r( p ) ) 2 ) . 0 for r-1,2,...,

since E(A(J))-aj. This completes the proof which clearly includes the

first cross correlation mentioned in the theorem. The proof htghLtghts the

fact that tt ta the tndependence of the vector of coeffictents

(At(1 ). .. ,At(P),Bt) on preutous Xt's which creates the effect tn thts type

of modeL.

The results of the theorem can be used to help validate random coef-

ficient autoregressive models; also useful in this respect are the non-

zero higher order residual crosscorrelations, e.g. for positive r

CorrRt(P),(Rt+r(P)) 2 ]. These have been obtained for the second order

autoregressive exponential process studied in Lawrance and Lewis (1985);
6

similar results for any first order random coefficient model of the type

K(4.1) are given in the next subsection.

It is worth noting that with Gt- r defined as any reasonable function of

(Xt-r,Xt-r_ 1 .... ), a similar argument to that given in the proof shows that

CorrCRt(P),Gt.r]-O, r-l,2,... (4.4)

A result of this type is not, however, sufficient to establish, for
10



instance, that Rt(P) and Rt-r(P) are independent, they are dependent.

The random coefficient autoregressive structure of (4.1) is not a

necessary condition for the results of this section to holdo this may be

illustrated by noting that Corr [Rt(P), (et_r-M) 2 ] is zero *when

C1 2 ( r)Oe((Xt-;&)(Xt_r-js)2 ) satisfy the equations

C1 2 (r)-ulCl2(r-1)+a2 Ci 2 (r-2)+...4apC1 2 (r-p), r-1,2...... (4.5)

The similarity of these equations to standard Yule-Walker equations (2.4)

will be apparent. Thus any process with this property will have

Corr(Rt(P),(Xt-r-A ,2 ] equal to zero for non-negative r.

4.2 Sigher Order epewniety for First Order Random Coefficient

Auto- l my iv Mels

The model to be considered is the first order (p-1) case of (4.1), now

to be denoted as

XtmhtXt....+Bt, t-O -l,*2,... ,(4.6)

in which At and St are independent between each t, but within themselves

may be dependent; we also write

a-E(At), -E(Xt)-(l-a )-E(St).

Many basic mathematical and probabilistic properties of this equation have

been studied by Vervaat (1979). Interest here is restricted mainly to the

residual crosscovariances of (Rt 2 ,Rt-r) and C(Xt-) 2,Rt.r] where Rt is the

first order residual given by
PRt-Xt-;L-a( Xt-1-g ). ( 4.7?)

It has been established in Section 4.1 that Cov(Rt,Rtr 2 )-Cov(Rt2 ,Rt+r)-O

for r-1,2,..., and so now Cov(Rt2 ,Rt-r) for r-O,1,2,... is obtained

explicitly.

* The calculation begins by writing the required covariance as

. >:5 Coy( Rt 2, Rt-r )-E (C[(Xt-g )-a( Xt_,-,A)12C[( Xt_rg )-a( Xt-r-l-AL) ] )

-C2 1( r)-aC 2 1( r+l )-2a(Ciii( r)-aClll(r+l))

• +a2 (C2 1 (r-l)-aC2 1 (r)) (4.8)

where, as defined just before (4.5),~~C21( r)-E (( Xt_ )2( Xtr_- ) , Clli( r)-E (( Xt-9)(Xt-1- )( Xt-r-; ) }.

0 ]



The higher order triple moment Clll(r) is easily seen to be equivalently

given by aC2 1(r-l), in the present instance, and hence (4.8) becomes,

Cov(R4:2,pt-r)"C21(r)-aC21(r+l)-a2 (C21(r-l)-aC21(rS}, r-1,2,.... (4.9)

For r-0, with A3-E[(Xt-g)3 ], there is the seperate result

E( Rt3 )-( I+2a 3 )13-3aC2 1( 1). (4.10)

The calculation of C2 1 (r) is effected by writing the defining equation

(4.6) in the form

X4:-jAAt ( Xt-l-A +(A t+B-A ).•

Squaring both sides, multiplying by Xt-r-A , and taking expectations then

gives

C21( r )-a2C2 1( r-l )+2( ia2 +E( AtBt )-a )C( r-I) (4.11)

where

C( r ).Cov( Xt, Xtr )qaro2, 2 var( Xt), a2sE( At 2 )

Further simplifications of (4.11) give the recursive equation

* C2 1(r)-a 2C2 1 (r-I)+kar
-l, r-1,2,..., (4.12)

where
k-2a 2 (;Lvar(At)+Cov(A., Bt)).

Equation (4.12) has explicit solution

C21(r )-a2r 3+k( a2r-ar )/( a2-a), (a2sa)
r-0,1,.... (4.13)

=ar 3+krar-
1  

, (a2 -a)

Going back to (4.9) for Cov(Rt2,Rt-r) and using (4.12), we have finally

Cov( Rt2
, Rt r )-( a2 +a

3 a2-aa2
2 -a2 )C2 1( r-1)

+(1-a2+a3-aa2 )kar
-l, r-1,2 ...... (4.14)

Thus, (4.14) and (4.13) constitute the explicit solution for the

crosscovariances of the residuals (Rt2 ,Rtr); notice that when At is the

constant a, the case of the standard first order linear model, these

crosscovariances are correctly zero. The NEAR(l) model of Lawrance and

Lewis (1991) specializes (4.6), by having independence within each (At,Bt)

and the particular forms

At - w.p. -a' Bt " KtEt, Kt 1 w.p. p
10 1..1-,b w.p. 1-p

where

b - (l-a)0, p - (l-0)/(l-(1-a)0}

and (Kt) is an independently distributed exponential sequence with
12
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parameter A.

If the covariances (4.14) are to be converted to correlations, then

Var(R t) and Var(Rt') must be obtained. This requires the following

calculation,

Var(Rtz) - E(Rt ) - (E(R&),a (4.1)

where

E(Rt,') -(I - az)or2 - Var(Rt), (4.16)

E(Rt 4 ) - (l+a') 4 - 4aC3 1 (l) + 6aaC2 2 (l) - 4a 3C 13 (i), (4.17)

with
;L-[(t )] Cij(l)-ECXt-1A)i(Xt-l-jA)J], (i,j)-(3,1),(2,2),(l,3).(4.l8)

The joint moments in (4.17) are now obtained in terms of the first four

moments about the mean of Xt, together with the first three moments and

joint moments about zero of At and St. Thus in terms of the further

quantities

a 3 - E(At 3 ), b 2 - E(Btz), dij - E(AisJ), (i.j)=(ll),(l,2),(2,l) (4.19)

we have, as with the derivation of (4.11), that

C3 1 ( 1) - 3aaal-3( L 3+2az )a 2 ( 94 +3lL3 +3 aOZ )a 3

-6jsuad 1 .143-a)d1 2 +3( I 3 +2A0 )d 2 1 , (4.20)

C2 2 (l) - - aca-2g3a+( 4 2 3 a a )a 2

+O1b 2 +2(g3+aZ )d 11 , (4.21)

C13(l) - 94 a. (4.22)

The results (4.20)-(4.22) have been checked against an alternative method

of calculation involving moments about zero instead of about A.

It was remarked in Section 3, following (3.2), that the cross-

correlations of (Xt-IA) z and Rt+r(P) can also be useful in assessing higher

order dependence. In the present case of first order residuals and

*autoregression there are the results,

Cov[(Xt-A)2 , Rt-r] - C2 1(r) - a C21(r+l), (4.23)

Var(Rt) - (--az)oz, VarC(Xt-A)a)] -4 - q4- (4.24)

These formula can all be applied to the NEAR(1) model of unit mean by

simply noting t)'at in this case

13

,=,o



Zr(Atr) - C10r , E(3.j) - rl [p+(1-p)br]. (4.25)

Figures 1 and 2 give the results of computations of Corr(Rtz,Rtor] and

Corr[(Xt-A)a,Rt-r] for the NEAR(l) model. The top left frame of Figure 1 is

the linear EAR(1) case for which all cross-correlations apart from lag zero

are zerol the other three cases in Figure 1 each have zero

croescorrelations at neqative lags, in agreemnt with the theoretical

results in Section 4.1, but have some non-zero values at the zero and

positive lags. It is evident that the lag zero cross correlations contain

a-O 999. $O.7 58: EAR( 1) Case0-0 g 0. 0-0 32

' ~~~ ~ ~ 1 :0)-O tO 2 : o• ag(r) LQ' ::

l ~~a .0 57. $i0.875 ; PR ER( () C OS@ PIOa5 , r0 go: TE.AR I) C S *
20 -0 0 0 ______________0___________ 

-2 0 10. 1-0

- A

S' -:2 -'0 0 Oa --:0 -a .1

Lo(r) Lag(r)

Fagu 5. Four €omputiC-ons of 5he croscor9a0onS, for )artous Lags,

• between the I,.Lnear autoregress~ue restduaL, Rt(P) and (,Rt(P))z frz -the
~,VEAR(l) process u;th p(J)=,aO heLd constnt at 0.75; Ln effect the rerant~ng

free parr=' eter ts betng varted through 4ts aLLowabLe range..14



much of the discriminating information between the four cases; this will be

so for first order autoreqressive models in which much of the higher order

dependency is at lag one, and the lag zero cross correlation involves both

third and fourth order aspects of the lag one dependency. For further

ii.ormation on the TEAR(1) and PRMAR(1) cases see Lawrance and Lewis

(1991).

Figure 2 gives CorrC(Xt-A)Z, tr] for the same four cases used in

Figure 1. The negative lags are again zero for all cases, and hence this

property does not discriminate the linear from the nonlinear cases. Rather

it is the strength of the crosscorrelations at positive lags which performs

this task, albeit less clearly than the crosscorrelations of the residuals

and squared residuals.
a-02 99. S-0 75!:; IAP( 0:350 0. ..0 54

71

i"a

-0 0 10 4-2 -10 1 10 :0

Laq(r) Loq(r)
a-0 !5'. a0- 875. 0REARM Cos o-O 758. 0-0 990: TEzt Cos-

aZ

x - fl I 1 ..... il- ..

' 3 0 0 01 0 -1 2 0 :

Ft.gure 2. Four computa.ttons Of the crosscorreotattons, for tpa-rtous t.ags,

between t he 7, near autoregr'ess ,ue restdua7 , Rt(p) , and (xt.lA) z tor t.he

NZAR(I) process ofth P(I)..O he&d Constant, at 0.75; L.n effect t~he rernat.ntng

free parameter t~s beotng uart.ed through tts a' towab~e range.
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4.3 Eibm oset ipenday for the Pzoduct Antoreeiou model

Another form of nonlinear autoregressive model, called PAXR(1), was

intzoduced by Ncenzie (1962); the basic idea of its construction is to

consider the exponentiation of the standard AR(1) equation. Then its

Sadditive structure becomes multiplicative, and the general form of the

PAR(1) product autoregressive model model is

Xt-( Xt-i )p , t-0,*,2, ..... (4.26)

where p is the dependency parameter, O(pcl, and (3 t) is an independent and

identically distributed innovation sequence, independent of Xtl,Xt2, ...

McKenzie studies the model when Bt is chosen so that (Xt) has a gamsa

marginal distribution, and obtains several basic results; for instance,

that p still represents the lag one autocorrelation and that the

autocorrelations in general satisfy the Yule-Walker first order equations

0 ((2.4) with p-1), so that p(r)-pr. It is apparent, however, that the

linear conditional expectation definition of autoregression (equation

(2.4)) is not satisfied because of the power form implied by (4.26).

As with the first order random coefficient models in Section 4.2, we

consider the first order residual Rt, given by (4.7), and will likewise

determine Cov(Rt 2 ,Rt.r) for r-0,*l,*2,..., noting that for this model thess

cor-eLattons ore non-zero for aL Lags. We will use the general expression

(4.9) in terms of the third order central moments C2 1 (r) and Clli(r), but

this time there is no simple relation between them, and both are needed for

all lags. Also, calculation of C2 1 (r) and C11 1(r) must be in terms of

their uncentered components, since these are the quantities which can

immediately be determined from the PAR( 1) equation (4.26). The required

uncentered moments will be written as

e 2 -E(Xt 2 ), e 3 -E( Xt 3 )~(4.27)
e2j( r)-E( Xt 2Xt-r ), elll( r)=E( XtXtlXt- r )

for r-0,*1,t2,..., and there is need to note the special cases,

e 2 1 (O)2e 3 , e 1 1 1 0)e 2 1 ( 1), e 1 1 1 ( 1 )-21(-l).

16



All these quantities will be calculated.

First, it is necessary to note the following relations between the

centred and uncentred moments,

C2 1 ( r )-e 2 1 ( r )-s 3 -2gC( r )-gq2  (all r)

C1 1I(o)-C2 1 (l), C1 1 1(l)-C 2 1 (-i) (4.20)

Clll( r)-elll( r)-I 3 - c( r)+C( r-l )+C( 1)), ( o0, 1).

The calculations of e 2 1 (r) and elll(r) need to be treated separately

for positive and negative lags, but follow in the same general manner and

will be illustrated by that for e21(r) for positive lags. By iterating the

PAR(l) equation (4.26) r steps backward,

r-l

Xt X Pr) n a t-iP(i)
i-o

where p(r)npr,r-O,l ..... Squaring this equation, multiplying it by Xt-r

and taking expectations, gives
r-I

e21(r)-E(Xtr
2P(r)+l) fl E(Bti 2p(i)). (4.29)

i-0

To obtain the expectations in the repeated product, taking the 2p(i)th

power of (4.26), leads to

z {xt2P i ) }=,(xt_12p i ) )E (g2p( i) ),

and hence, dropping the unnecessary suffix t, to the result

3(52P( i)).E(X 2 P( i))/E(X2P(i+l)).

Now (4.29) can be expressed purely in moments of X, as

e 2 l(r)mE(X2p(r)+l)E(X2 )/E(X2 p(r)). (4.30)

To proceed further, invoke a gamma marginal distribution for X with density

f(x)-s0x0-'e-K/1r(o), eoo, xo; (4.31)

this has mean 0/0, variance 0/02, third central moment 20/9 3 , and there is

the kth moment result E(k) - ( j k)/9 k r(D). From (4.30) and similar

expressions we then have

(21 (r) (0+1)(04+2p r )/e 3, r-l,2,... (4.32)

. I.3(1p i r I )(,-p I r 1+1)/93, r-1,-2,

• ()-3(0+p)(,3+pr-l+pr)/9 3 , r-2,3,... (4.33)

.(D+,Irl )(1+p+prl1)/93 ,  r-l,-2....
17



with 021(0), oiii(0) and el1(l) being given by the special cases of

(4.27). Use of (4.26) gives finally the required expressions

c2 1(r) = f2~pr/e3 r-o,l....C2( ( p I r I p21I r 1 )/93, r-1, ,-2,.. ( 4.34 )

C (r) prpr+l )/e 3, r=2,3,... (435)

Lc(plrI+l+p2 Irl+l)/e 3  r-l,-2, ...

All these may be used in (4.8) to obtain the desired result for

Cov(Rt2,Rt-r) as

r20(l-pa )zpr/9e r-l,2.
Cov(RtZ,Rt...r) - jO(2-6p2+pS+3p4)/9e r-O (4.36)

-0 ( l -p )( l p z  )z p I r I- 1 / e3 - , -2 . .

The simpler covariance of (Xt-g)? and Rt-r also follows via (4.23) and

(4.35) as

= r213(l-pz)pr/93 r-0,1 ....C~v( (Xt-4)4' t-r) - 10( 1-)pz Ir I-1/ 3  r- l,-2 .. (4.37)

Conversion of these covariances to correlations requires Var(Rtz) as at

(4.15) and Var[(Xt-;)z] as at (4.24); the required intermediate results are

A4 - 30(j+2)/e 4 ,

C3 1(l) - 30(0+2)p/e*, C1 3(l) - O3(30+(l+p)(2+p))p/e 4 ,

C 22 (l) - (0 Z+ 2 0p+2O(O+ 2 )pZ)/9. (4.38)

These then give as at (4.15)-(4.19) the explicit expression

Vat(Rtz ) - 2 0 ((,+3- 2( 0+6 )pZ+6p3 ( 0+11)p4-6pS-2p
e)/4. (4.39)

Together with Var(Rt) which is simply (l-pZ)j 3/ 9 , Cov(RtZ,Rt-r) can be

converted into Corr(Rt,Rtr). similarly, (4.37) requires the result

Var((Xt- )2) - 2(j3+3)/e 4  (4.40)

in order to obtain corr((Xt-j) 2,Rt).

Figures 3 and 4 illustrate the residual and squared residual cross

correlations for the PAR(l) model. Figure 3 shows how these residual cross

correlations vary over the range of p values from p-0 to p-0.9 for an

exponential marginal distribution. At p-0, the PAR(l) is an IDD process

and the residuals are trivially independent, resulting in the only non-zero

crosecorrelation at lag zero. As the p value increases the dependence

spreads out, mosc strongly at positive lags. An interesting feature is the

18



laq zero cro.scorrelation which changes from being strongly positive at p-O

to approximately zero at p-O.7S, to moderately negative at p-0.9

0-1 Oft Oa-00 8-1.0 . -0 .Wo.
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Lag,) L," r)

f r t 0,.( .m .o.250. 1-,.0 the 000. a..-.500t t-0 0
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'-I, -,@ 1 '0 ".l0o*0 I 'Sl

q(t) ,)

v. 0. .0,SO. ad10. 0 thes.ea.sinic. .a i

which from t1he,, fo e ( , ( ) a..

1 1

." , ' V,

*.Ftgure 3.Computattert* of the restduaL, crosscorr.onfs, Corr(Rtz,Rt.j-)

for the PAR(1) model.. S$ ne D-1 the margtnal. dtsltrtbuttern ta .ponental.

he Lag one sertal. correLatton Ls Lncreosed from p(1)-O.O (upper elft) "to

p(1).0.9 (Louer rtght).

0
. Figure 4 gives four different gamma caoes of the PAR(l) residual cross

correlations, all with p-0.75. The gamma shape parameter 0 takes the

iO values 0.5, 1.0, 2.5 and 10.0; these cases indicate that changes in the

- ,.gzma paramete-- cause only slow changes in detail of the cross correlations

' #S which fr-om the formulae ( 4.37 ), ( 4.39 ) and ( 4.40 ) all tend to zero as 0--s.
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Ftgure 4. Computatitons of the rostdUat c,-sscorreZtat tons, COrr(Rt2 ,Rt-r),

for the PAR(1) Mode. L ne p for each case of 0. 75, anid the fLtgurOB

tilustrate the .ffoct on the resfdual. crosscorre-ati-ons of changitng the

index a of the gafvna dtstrtbuttori through 0.5, 1.0, 2.5 anid 10.0.

S. OM IN

A methodology for analyzing higher order dependence in nonlinear time

* series with pth order autoregressive correlation structure has been

*proposed. It utilizes standard uncorrelated linear autoregressive

residuals, and the crosscorrelation function of the3e residuals and their

squares. The behaviour of this crosscorrelation function has been utilized

* for two rather different types of nonlinear model: random coefficienvt

autoregression and multiplicative autoregression: the behaviour has been

20



shown to allow discrimination between models in the same class with the

same marginal and autocorrelation structures.

The residuals crosscorrelation function provides a partial analysis of

third order information in the time series; it does not attempt to capture

all third order information, which is the aim of such techniques as

bispectral analysis and which will often be intractable with nonlinear

models. Being based on standard linear residuals, the analysis extends

rather than replaces conventional residual analysis.

Developments of the analysis which focus on the directionality implicit

in many time series are being investigated; reversed residuals assume a

reversed directionality and allow exploration of the consequences of such

an assumption.
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